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Why Dependent Types?

Verification: Dependent types express application-specific
program invariants that are beyond the scope of existing type
systems

Expressiveness: Dependent types enable flexible interfaces, of
particular importance to generic programming and
metaprogramming.

Uniformity: The same syntax and semantics is used for
computations, specifications and proofs

Program verification is “just programming”




Dependent types and verification

e Haskell prelude function, only defined for non-empty
lists:

head :: a list -> a
head (x : Xs) = X

head [] = error “no head”

* |s “head 2z” acorrect program? Haskell’s type
checker can’t tell.



With dependent types

e Datatype that tracks the length of the list at compile time

data Nat = O | S Nat
data Vec (a : *) (n : Nat) where

nil : Vec a O

cons ¢ a -=> Vec a n -> Vec a (S n)
head :: Il (x:Nat). Vec a (S x) -> a
head (cons X Xs) = X

—- head nil case impossible!

 If “head z" typechecks, then z must be non-nil.



Indexed datatypes encode proofs

Inductive is redblack : — — nat —
Prop :=
| IsRB leaf: Vc, is redblack 0
| IsRB r: Vtl k tr n,
is_redblack n — Red nodes must have
is redblack n — Black parents
is redblack n

| IsRB_b: Vc tl k tr n, Black nodes can have

is_redblack N = arbitrary parents
is redblack n —
is redblack (S n)

Appel. “Efficient Verified Red-Black Trees.” 2011




Expressiveness

What about programs that do what you want, but don’t type
check?

Generic programming
— Types can be calculated by programs
— Program execution can depend on types

Embedded Domain-Specific Languages
— Application-specific type checking

— Building a programming language is hard!
— Dependently-typed meta-languages



Generic Programming

e User-defined generic traversals

— Operations defined over representations of the type structure,
in a type-preserving way

— Eliminates boilerplate code. Aids development & refactoring

e Examples:
children (BinOp Plus el e2) == [el; e2]
freshen (If (Var “x"”) (Var “y") (Var *"“z")) ==
(If (var “x0") (var "“y0") (Var “z0"))
arbitrary / shrink forrandom test generation



Embedded Domain Specific Languages

e EFFECT, embedded in Idris
— algebraic model of effects in types
— alternative to Monad Transformers
— extensible to new effects

 Bedrock & VST, embedded in Coq

— low-level safe C-like language
for safe systems programming

— tactics for generating proofs about

memory safety

* |vory, embedded in Haskell

— low-level safe C-like language
for safe systems programming

— generates C, linked with RTOS and loaded onto quadcopter



What are the research problems in
designing dependently-typed languages?



Effective program development

How can we make it easier to create and work with
dependently-typed programs?

— Specifications and proofs can be long... sometimes longer than the

programs themselves

Research directions:

— Embedded domain-specific languages

— Tactics (special purpose language to generate programs)

— Type/proof inference

— Theorem provers (SMT solvers, etc.)

— |IDE support: view development as interactive (cf. UIf Norell ICFP 2013)

— Incremental development

* Once you have stated a program property, why not use it for testing first?



Efficient Compilation

e Consider this function:
safe head : Il (x:1list a).|non empty x|-> a

safe head (cons x xs) = X

* How do we divide computational arguments from
specificational arguments?
* |dris/Epigram — let the compiler figure it out
 GHC (and many others) — syntactically distinguish them
* Coq - type system sort distinction (Prop / Set)
* Trellys, ICC* (and others) — type system analysis



Non-termination

Consistency proofs for logic require all programs to terminate
Programmers don’t

What to do?

— Require proofs to be values

— Nontermination monad (model infinite computation via
coinduction)

— Partial type theories (Nuprl, Zombie)

Chris Casinghino, Vilhelm Sjoberg, Stephanie Weirich.
“Combining Proofs and Programming in a
Dependently-Typed Language”,
Session 1la tomorrow



Semantics

* Type checking requires deciding type equality....
....and types contain programs

 When are two programs equal?
— When they are beta equal? (\x.x) 3 =3
— (See Richard’s talk on Closed Type Families, Friday)

— When they are beta/eta equal? (\xy. plus x y) = plus

— When they are both proofs of the same thing?

pl,p2:A=B implies pl=p2
— When their relevant parts are equal?
— Univalence: still more yet...

 Many other semantic issues

— Predicativity vs. Impredicativity

@
. - ®
— Inductive datatypes & termination DON’T PAN'C




How to get started?
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Pick a language and play with it

Agda: See wiki for tutorials, watch invited talks from ICFP 2012
(McBride) & 2013 (Norell)

Coq: Certified Programming with Dependent Types (Chlipala)
Software Foundations (Pierce et al.)

Idris: Tutorials and videos at http://www.idris-lang.org/ (Brady)
F-star: Security-focus, compiles to Javascript and F# (Swamy et al.)
GHC: Singletons (Eisenberg & Weirich) and

Hasochism (Lindley & McBride) m




Implement your own language!

 We are still learning about the role of dependent
types in programming
— There is plenty still to learn by experimenting!

e Don’t have to start from scratch

— Loh, McBride, Swierstra. “A Tutorial Implementation of a
Dependently Typed Lambda Calculus.” Fundamenta
Informaticae, 2001

— Lectures on implementing Idris (www.idris-lang.org)
— My OPLSS 2013 lectures & pi-forall github repository



