Why should you care about
dependent types?

Stephanie Weirich
University of Pennsylvania
PLMW 2014

PENN

Why | care about
dependent types

PENN

Stephanie Weirich
University of Pennsylvania
PLMW 2014

Type systems Research

/ All programs (that do somethirﬁ

Similar to a correct program
but the type system can’t
rule it out

Programs that do
what you want

Verification

[\
“Equivalent” to a "
well-typed program,
but much easier to write

&Expressiveness /

Programs that
type check

Why Dependent Types?

Verification: Dependent types express application-specific
program invariants that are beyond the scope of existing type
systems

Expressiveness: Dependent types enable flexible interfaces, of
particular importance to generic programming and
metaprogramming.

Uniformity: The same syntax and semantics is used for
computations, specifications and proofs

Program verification is “just programming”

Dependent types and verification

e Haskell prelude function, only defined for non-empty
lists:

head :: a list -> a
head (x : Xs) = X

head [] = error “no head”

* |s “head 2z” acorrect program? Haskell’s type
checker can’t tell.

With dependent types

e Datatype that tracks the length of the list at compile time

data Nat = O | S Nat
data Vec (a : *) (n : Nat) where

nil : Vec a O

cons ¢ a -=> Vec a n -> Vec a (S n)
head :: Il (x:Nat). Vec a (S x) -> a
head (cons X Xs) = X

—- head nil case impossible!

 If “head z" typechecks, then z must be non-nil.

Indexed datatypes encode proofs

Inductive is redblack : — — nat —
Prop :=
| IsRB leaf: Vc, is redblack 0
| IsRB r: Vtl k tr n,
is_redblack n — Red nodes must have
is redblack n — Black parents
is redblack n

| IsRB_b: Vc tl k tr n, Black nodes can have

is_redblack N = arbitrary parents
is redblack n —
is redblack (S n)

Appel. “Efficient Verified Red-Black Trees.” 2011

Expressiveness

What about programs that do what you want, but don’t type
check?

Generic programming
— Types can be calculated by programs
— Program execution can depend on types

Embedded Domain-Specific Languages
— Application-specific type checking

— Building a programming language is hard!
— Dependently-typed meta-languages

Generic Programming

e User-defined generic traversals

— Operations defined over representations of the type structure,
in a type-preserving way

— Eliminates boilerplate code. Aids development & refactoring

e Examples:
children (BinOp Plus el e2) == [el; e2]
freshen (If (Var “x"”) (Var “y") (Var *"“z")) ==
(If (var “x0") (var "“y0") (Var “z0"))
arbitrary / shrink forrandom test generation

Embedded Domain Specific Languages

e EFFECT, embedded in Idris
— algebraic model of effects in types
— alternative to Monad Transformers
— extensible to new effects

 Bedrock & VST, embedded in Coq

— low-level safe C-like language
for safe systems programming

— tactics for generating proofs about

memory safety

* |vory, embedded in Haskell

— low-level safe C-like language
for safe systems programming

— generates C, linked with RTOS and loaded onto quadcopter

What are the research problems in
designing dependently-typed languages?

Effective program development

How can we make it easier to create and work with
dependently-typed programs?

— Specifications and proofs can be long... sometimes longer than the

programs themselves

Research directions:

— Embedded domain-specific languages

— Tactics (special purpose language to generate programs)

— Type/proof inference

— Theorem provers (SMT solvers, etc.)

— |IDE support: view development as interactive (cf. UIf Norell ICFP 2013)

— Incremental development

* Once you have stated a program property, why not use it for testing first?

Efficient Compilation

e Consider this function:
safe head : Il (x:1list a).|non empty x|-> a

safe head (cons x xs) = X

* How do we divide computational arguments from
specificational arguments?
* |dris/Epigram — let the compiler figure it out
 GHC (and many others) — syntactically distinguish them
* Coq - type system sort distinction (Prop / Set)
* Trellys, ICC* (and others) — type system analysis

Non-termination

Consistency proofs for logic require all programs to terminate
Programmers don’t

What to do?

— Require proofs to be values

— Nontermination monad (model infinite computation via
coinduction)

— Partial type theories (Nuprl, Zombie)

Chris Casinghino, Vilhelm Sjoberg, Stephanie Weirich.
“Combining Proofs and Programming in a
Dependently-Typed Language”,
Session 1la tomorrow

Semantics

* Type checking requires deciding type equality....
....and types contain programs

 When are two programs equal?
— When they are beta equal? (\x.x) 3 =3
— (See Richard’s talk on Closed Type Families, Friday)

— When they are beta/eta equal? (\xy. plus x y) = plus

— When they are both proofs of the same thing?

pl,p2:A=B implies pl=p2
— When their relevant parts are equal?
— Univalence: still more yet...

 Many other semantic issues

— Predicativity vs. Impredicativity

@
. - ®
— Inductive datatypes & termination DON’T PAN'C

How to get started?

Reading List

Per Martin Lof. Constructive mathematics and computer
programming, 1982

Nordstrom, Petersson, and Smith. Programming in Martin-
Lof's Type Theory, 1990

Barendregt. “Lambda Calculi with Types.” Handbook of Logic
in Computer Science I, 1992

Harper, Honsell, Plotkin. “A Framework for Defining Logics.”
JACM 1993

Aspinall and Hoffman. “Dependent types.” ATTAPL, 2004

Sgrensen and Urzyczyn, Lectures on the Curry-Howard
Isomorphism, 2006

Homotopy Type Theory: Univalent Foundations of
Mathematics, 2013

Pick a language and play with it

Agda: See wiki for tutorials, watch invited talks from ICFP 2012
(McBride) & 2013 (Norell)

Coq: Certified Programming with Dependent Types (Chlipala)
Software Foundations (Pierce et al.)

Idris: Tutorials and videos at http://www.idris-lang.org/ (Brady)
F-star: Security-focus, compiles to Javascript and F# (Swamy et al.)
GHC: Singletons (Eisenberg & Weirich) and

Hasochism (Lindley & McBride) m

Implement your own language!

 We are still learning about the role of dependent
types in programming
— There is plenty still to learn by experimenting!

e Don’t have to start from scratch

— Loh, McBride, Swierstra. “A Tutorial Implementation of a
Dependently Typed Lambda Calculus.” Fundamenta
Informaticae, 2001

— Lectures on implementing Idris (www.idris-lang.org)
— My OPLSS 2013 lectures & pi-forall github repository

