
From POPL to the Jungle and back

Peter Sewell

University of Cambridge

PLMW: the SIGPLAN Programming Languages Mentoring Workshop

San Diego, January 2014

p. 1



POPL 2014

41th ACM SIGPLAN-SIGACT Symposium

on

Principles of Programming Languages

p. 2



p. 3



p. 4



How can we reconcile the two?

Four styles of research — each with their pros and cons
(all can be good or bad...)

p. 5



Option 1: Principles of Programming Languages

Ignore that legacy infrastructure altogether

Do some beautiful mathematics

p. 6



Option 1: Principles of Programming Languages

Ignore that legacy infrastructure altogether

Do some beautiful

{

Fundamental
Irrelevant

}

mathematics

p. 6



Option 1: Principles of Programming Languages

Ignore that legacy infrastructure altogether

Do some beautiful

{

Foundational?
Irrelevant

}

mathematics

p. 6



Option 2: Principled Programming Languages

How would we rebuild that infrastructure right?

Principled Programming

p. 7



Option 2: Principled Programming Languages

How would we rebuild that infrastructure right?

Principled Programming

(ignoring constraints of engineering effort and currently
available skills...)

p. 7



Option 3: Principles of Fragments of Hypothetical
Programming Languages (or Analysis Tools)

1. Pick some specific issue from practice

2. Propose a solution

3. Work it out in the context of a small calculus

p. 8



Option 3: Principles of Fragments of Hypothetical
Programming Languages (or Analysis Tools)

1. Pick some specific issue from practice

2. Propose a solution

3. Work it out in the context of a small calculus

4. Build a prototype implementation with no formal
connection to that calculus

p. 8



Option 3: Principles of Fragments of Hypothetical
Programming Languages (or Analysis Tools)

1. Pick some specific issue arguably from practice

2. Propose a solution

3. Work it out in the context of a small calculus

4. Build a prototype implementation with no formal
connection to that calculus

(hope it will catch on in some future full-scale language
design)

p. 8



Option 4: As-principled-as-you-can-manage
Approach to Mainstream Programming
Languages

Take (some aspect of) the legacy infrastructure seriously.
Figure out how to do something rigorous+useful with it.
Accept it may not be beautiful

p. 9



Option 4: As-principled-as-you-can-manage
Approach to Mainstream Programming
Languages

Take (some aspect of) the legacy infrastructure seriously.
Figure out how to do something rigorous+useful with it.
Accept it may not be beautiful

p. 9



p. 10



(hope you manage to get somewhere before going mad)
p. 11



Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types

p. 12



Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types

ICFP 2003: λ-Calculi with marshalling and dynamic update
Leifer, Peskine, Wansbrough; Bierman, Hicks, Stoyle

p. 12



Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types

ICFP 2003: λ-Calculi with marshalling and dynamic update
Leifer, Peskine, Wansbrough; Bierman, Hicks, Stoyle

ICFP 2005: Acute Language
Leifer, Wansbrough, Zappa Nardelli, Vafeiadis, ...

p. 12



Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types

ICFP 2003: λ-Calculi with marshalling and dynamic update
Leifer, Peskine, Wansbrough; Bierman, Hicks, Stoyle

ICFP 2005: Acute Language
Leifer, Wansbrough, Zappa Nardelli, Vafeiadis, ...

ML Workshop 2006: HashCaml
Shinwell, Billings, Strniša

p. 12



Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types

ICFP 2003: λ-Calculi with marshalling and dynamic update
Leifer, Peskine, Wansbrough; Bierman, Hicks, Stoyle

ICFP 2005: Acute Language
Leifer, Wansbrough, Zappa Nardelli, Vafeiadis, ...

ML Workshop 2006: HashCaml
Shinwell, Billings, Strniša

−→ POPLmark challenge (with Pierce, Weirich, Zdancewic, ...)
−→ Ott (with Zappa Nardelli, Owens,...)

p. 12



Example: Relaxed Shared-Memory Concurrency

(Example of Option 4: As-principled-as-you-can-manage
Approach to Mainstream Programming Languages)

p. 13



What You Would Naturally Expect

Shared Memory

Thread1 Threadn

W R RW

Multiple hardware threads operating on the same memory

Asynchronously...

p. 14



The GhoĆ of MultiproceĄorŊ PaĆ
BURROUGHS D825, 1962

‘‘Outstanding features include truly modular hardware

with parallel processing throughout’’

FUTURE PLANS

The complement of compiling languages is to be expanded.’’

p. 15



Multiprocessor Concurrency
Simple Message-Passing Example:
Thread 0 Thread 1

x=1 r1=y if this reads 1...

y=1 r2=x ...will this definitely read 1?

Initial state: x=0 y=0 Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

p. 16



Multiprocessor Concurrency
Simple Message-Passing Example:
Thread 0 Thread 1

x=1 r1=y if this reads 1...

y=1 r2=x ...will this definitely read 1?

Initial state: x=0 y=0 Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

x86: yes

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

p. 16



Multiprocessor Concurrency
Simple Message-Passing Example:
Thread 0 Thread 1

x=1 r1=y if this reads 1...

y=1 r2=x ...will this definitely read 1?

Initial state: x=0 y=0 Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Microarchitecturally: writes committed, writes propagated,
and/or reads satisfied out-of-order

Compilers: common subexpression elimination

p. 16



Less Simple Example

Test PPOCA: Allowed

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

e: R[x]=1

f: R[z]=0

d: W[x]=1

dmb/sync
rf

ctrl

rf

rf

addr

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

PPOCA Allow 1.1k/3.4G 0/49GU 175k/157G 0/24GU 0/39GU 233/743M 0/2.2GU

PPOAA Forbid 0/3.4G 0/46G 0/209G 0/24G 0/39G 0/26G 0/2.2G p. 17



What do the vendor architecture specs say?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011

p. 18



How to Make Sense of This?
1. figure out how to talk to systems people

2. test generation (manual and systematic)

3. test harness (pre-silicon and production - found many
surprising phenomena plus some serious bugs)

4. write model in math (4000 lines)

5. generation of exhaustive simulator from model

6. auto-comparison between tests and model

7. English version of model, in sync with maths (few pages)

8. discussion with architects

9. goto 1

[Sarkar, Maranget, Alglave, Williams, Sewell] p. 19



...since 2007
clarify concurrency model for x86, IBM POWER, ARM
(Sarkar, Owens, Zappa Nardelli, Alglave, Maranget,...)

clarify concurrency model for C11/C++11
(Batty, ...)

Industry Impact:

x86 consensus spec

in-depth discussion with IBM and ARM architects

found processor bugs

fixed C/C++ standards

compilation of C/C++11 concurrency to x86, Power, ARM

compiler concurrency testing (Zappa Nardelli)

Using those models for s/w verification: CompCertTSO,
C/C++11, take-up by others

p. 20



Executable Semantics
Must be able to:

explore the semantics interactively

decide whether an experimentally observed result is
allowed by the semantics

compute the set of all semantics-allowed behaviours of
small test programs

reason about the semantics

QUICK CPPMEM DEMO

p. 21



Principles?

p. 22



The Importance of Opportunism

p. 23



Research

1. Identify problem worth solving

2. Guess how hard it’s going to be

3. Solve it

4. Explain problem + solution to people

p. 24



Research

1. Identify problem worth solving

2. Guess how hard it’s going to be

3. Solve it

4. Explain problem + solution to people

5. ...get a job

6. GOTO 1

(btw, for Option 4 people... we’ll be recruiting over the
next years)

p. 24


	Option 1: {large etextc emph {Principles}} {small of Programming Languages}
	Option 1: {large etextc emph {Principles}} {small of Programming Languages}
	Option 1: {large etextc emph {Principles}} {small of Programming Languages}

	Option 2: {large etextc emph {Principled}} {small Programming Languages}
	Option 2: {large etextc emph {Principled}} {small Programming Languages}

	Example: Type-safe Distributed FP
	Example: Type-safe Distributed FP
	Example: Type-safe Distributed FP
	Example: Type-safe Distributed FP
	Example: Type-safe Distributed FP

	Example: Relaxed Shared-Memory Concurrency
	What You Would Naturally Expect
	�ontfamily {yfrak}selectfont Large {}color {black}The Ghost of Multiprocessors Past
	Multiprocessor Concurrency
	Multiprocessor Concurrency
	Multiprocessor Concurrency

	Less Simple Example
	What do the vendor architecture specs say?
	How to Make Sense of This?
	...since 2007
	Executable Semantics
	Principles?
	The Importance of Opportunism
	Research
	Research


