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How can we reconcile the two?

Four styles of research — each with their pros and cons
(all can be good or bad...)
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Option 1: Principles of Programming Languages

Ignore that legacy infrastructure altogether

Do some beautiful mathematics
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Option 2: Principled Programming Languages

How would we rebuild that infrastructure right?

Principled Programming
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Option 2: Principled Programming Languages

How would we rebuild that infrastructure right?

Principled Programming

(ignoring constraints of engineering effort and currently
available skills...)
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Option 3: Principles of Fragments of Hypothetical
Programming Languages (or Analysis Tools)

1. Pick some specific issue from practice

2. Propose a solution

3. Work it out in the context of a small calculus
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Option 3: Principles of Fragments of Hypothetical
Programming Languages (or Analysis Tools)

1. Pick some specific issue arguably from practice

2. Propose a solution

3. Work it out in the context of a small calculus

4. Build a prototype implementation with no formal
connection to that calculus

(hope it will catch on in some future full-scale language
design)
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Option 4: As-principled-as-you-can-manage
Approach to Mainstream Programming
Languages

Take (some aspect of) the legacy infrastructure seriously.
Figure out how to do something rigorous+useful with it.
Accept it may not be beautiful
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(hope you manage to get somewhere before going mad)
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Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types
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Example: Type-safe Distributed FP
(example of Option 2/3: Principles of Fragments of
Hypothetical Programming Languages)

POPL 2001: Module system for distributed abstract types

ICFP 2003: λ-Calculi with marshalling and dynamic update
Leifer, Peskine, Wansbrough; Bierman, Hicks, Stoyle

ICFP 2005: Acute Language
Leifer, Wansbrough, Zappa Nardelli, Vafeiadis, ...

ML Workshop 2006: HashCaml
Shinwell, Billings, Strniša

−→ POPLmark challenge (with Pierce, Weirich, Zdancewic, ...)
−→ Ott (with Zappa Nardelli, Owens,...)
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Example: Relaxed Shared-Memory Concurrency

(Example of Option 4: As-principled-as-you-can-manage
Approach to Mainstream Programming Languages)

p. 13



What You Would Naturally Expect

Shared Memory

Thread1 Threadn

W R RW

Multiple hardware threads operating on the same memory

Asynchronously...
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The GhoĆ of MultiproceĄorŊ PaĆ
BURROUGHS D825, 1962

‘‘Outstanding features include truly modular hardware

with parallel processing throughout’’

FUTURE PLANS

The complement of compiling languages is to be expanded.’’
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Multiprocessor Concurrency
Simple Message-Passing Example:
Thread 0 Thread 1

x=1 r1=y if this reads 1...

y=1 r2=x ...will this definitely read 1?

Initial state: x=0 y=0 Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf
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Multiprocessor Concurrency
Simple Message-Passing Example:
Thread 0 Thread 1

x=1 r1=y if this reads 1...

y=1 r2=x ...will this definitely read 1?

Initial state: x=0 y=0 Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

x86: yes

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M
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Multiprocessor Concurrency
Simple Message-Passing Example:
Thread 0 Thread 1

x=1 r1=y if this reads 1...

y=1 r2=x ...will this definitely read 1?

Initial state: x=0 y=0 Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Microarchitecturally: writes committed, writes propagated,
and/or reads satisfied out-of-order

Compilers: common subexpression elimination
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Less Simple Example

Test PPOCA: Allowed

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

e: R[x]=1

f: R[z]=0

d: W[x]=1

dmb/sync
rf

ctrl

rf

rf

addr

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

PPOCA Allow 1.1k/3.4G 0/49GU 175k/157G 0/24GU 0/39GU 233/743M 0/2.2GU

PPOAA Forbid 0/3.4G 0/46G 0/209G 0/24G 0/39G 0/26G 0/2.2G p. 17



What do the vendor architecture specs say?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011
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How to Make Sense of This?
1. figure out how to talk to systems people

2. test generation (manual and systematic)

3. test harness (pre-silicon and production - found many
surprising phenomena plus some serious bugs)

4. write model in math (4000 lines)

5. generation of exhaustive simulator from model

6. auto-comparison between tests and model

7. English version of model, in sync with maths (few pages)

8. discussion with architects

9. goto 1

[Sarkar, Maranget, Alglave, Williams, Sewell] p. 19



...since 2007
clarify concurrency model for x86, IBM POWER, ARM
(Sarkar, Owens, Zappa Nardelli, Alglave, Maranget,...)

clarify concurrency model for C11/C++11
(Batty, ...)

Industry Impact:

x86 consensus spec

in-depth discussion with IBM and ARM architects

found processor bugs

fixed C/C++ standards

compilation of C/C++11 concurrency to x86, Power, ARM

compiler concurrency testing (Zappa Nardelli)

Using those models for s/w verification: CompCertTSO,
C/C++11, take-up by others
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Executable Semantics
Must be able to:

explore the semantics interactively

decide whether an experimentally observed result is
allowed by the semantics

compute the set of all semantics-allowed behaviours of
small test programs

reason about the semantics

QUICK CPPMEM DEMO
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Principles?
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The Importance of Opportunism
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Research

1. Identify problem worth solving

2. Guess how hard it’s going to be

3. Solve it

4. Explain problem + solution to people
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Research

1. Identify problem worth solving

2. Guess how hard it’s going to be

3. Solve it

4. Explain problem + solution to people

5. ...get a job

6. GOTO 1

(btw, for Option 4 people... we’ll be recruiting over the
next years)
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