One Minute Madness

PLMW 2014

Alexander Bakst

Data Structure Verification
via Refinement Types

append(x1,) 1
(x1 !'= null){

= X1.next;
x1.next = append(n, x2);

X1;
s {

X2}

Alexander Bakst
University of California, San Diego

Andrew Bedforad

Non-interference

1.
2.

3.

4.

What is non-interference?
Our approach

a.
b.

Flow sensitive

Uses both static and dynamic analysis
I. Less false positives
i. Less overhead

Current work

a.
b.

Concurrent programs
Termination sensitivity

Future work

a.
b.
C.

Declassification
Quantification
Java implementation

send publicValue to publicChannel;
recv _ file from user;
recv line from file;

content]
send line to internet

if privateValue > 0 then
while true do skip end
end;
send publicValue to publicChannel

Example where private information influences the
termination of a program.

Wiall UNIVERSITE

Andrew Bedford 2 ®r, LAVAL

Benjamin Greenman

Conditional Inheritance

class List<T> extends Eq<List<T>> given T extends Eq<T>

°Ben Greenman, Cornell University
1/1

Cole Schlesinger

tomorrow at

3:15pm

come see

CAROLYN
ANDERSON

present

NetKAIT

an algebraic presentation of network packet processing and verification

Cyrus Omar

Type-Oriented Foundations for
Safely Extensible Programming Systems

Cyrus Omar, CMU

—
client compatibility

G) P) QJ R
features
(syntax, type system, implementation
strategy, editor service)

(a) Separate Languages (b) Extensible Language A language A library

Denis Bogdanas

Executable Java semantics in K Framework

Things done

» Complete Java 1.4

» Underlying formalism:
» K Framework

The problem

» Hard to explain

» Hard to use

The solution

» Split the semantics into:

» The preprocessing semantics
» The execution semantics

» Valid java programs as preprocessing result

Diego Gomez
Ajnuacho

Elias Castegren

Race-free Parallelism using
Refined Ownership Types with Effects

elias.castegren@it.uu.se

class LLink[Data = E + Rest] {
E:Object element;
Owner:Link [Rest] next;

void map (Function f) writes Data({
par{
f.call (element); // writes E
next.map (f) ; // writes Rest

Elizabeth Davis

Modeling Steganography with Linear
Epistemic Logic

Elizabeth Davis
Advisor: Frank Pfenning

Bit ops + normalization

Embedea steganographic

message message
Epistemic logic : reason about information gained from extracting encoded message
Linear logic : reason about consumption and generation of resources in changing state

Linear Epistemic logic : reason about actions based on changing information state
(DeYoung & Pfenning, 2009)

<K> A — K says A : linear affirmation

[K A — K has A : linear knowledge

HK] A - Kknows A : persistent knowledge

(Carnegie
Mellon
University

Eric Mullen

Formally Verifying a
Superoptimizer

Eric Mullen

Eric Seidel

Refinement Types with LiquidHaskell

data Text = Text

{ arr :: Array

, off :: {v:iNat | v <= alen arr;}
, len :: {v:Nat | v + off <= alen arr}
}

type Nat = {v:Int | v >= 0}

measure alen :: Array -> Nat

Erick Lavole

Erick Lavoie, PhD @ McGill University

Why? Allow scientists and engineers to run MATLAB code in
the browser, fast!

: dynawic
static UIT)

How? MATLAE =3 JSON AST JavaSeript

Mclab
Compiler new MATLAB
VMin JS

o Find the fastest JS subset for num. computation

o Design techniques for dynamic compilation to JS

e Characterize the performance behaviour of complex VMs
e Understand optimization across multiple VM layers

lmpact?

Ethel Bardsley

*\erity kernels
e Atomics make this harder

e Refined abstraction

Evgeny Roubinchtein

(Re)Implementing MetaOCaml: a multi-stage
programming system

Multi-stage programming?

> A generalization of RE.compile()

> A (typed) eval()

> A partial evaluation you can repeat again (and
again, and again. . .)

Is this stuff new?

» Native compiler has been done for OCaml 3
» Bytecode compiler has been done for OCaml 4

> (As far as | know) native compiler hasn't yet
been done for OCaml 4

Me

Evgeny Roubinchtein, University of British Columbia,
advised by Ron Garcia

Ezgi Cicek

A Type System for Incremental Computational Complexity Ezgi Cicek, MPI-SWS

Tuesday, January 21, 14

Fablan Muehlboeck

Fabian Muehlboeck

Gradual Typing for OO languages

List<T> SnocS<T>(IEnumerable<T> startS, T endS) {
var elemsS = startS.TolList();
elemsS.Add(endS);
return elemsS;

dynamic SnocD(dynamic startD, dynamic endS) {
var elemsD = startD.TolList();
elemsD.Add(endD);
return elemsD;

~elipe Banados

{[, 1‘:('11(:

PO \x(\) Q W
“" "(’\','(.’;‘u’x‘um?nh
' \,‘ AKX

G

Gradual Type-and-Effect Systems

Felipe Banados — University of Chile

Filip Niksic

FILIP NIKSIC

MPI-SWS

void thread() { T
// Non-critical section @
synchronized(lock) /I<—®

{

. L/

Hannah Gommerstadt

Vulnerability Distribution on the Android
(~10,000 analyzed applications)

m Cryptographic
Issues
CRLF Injection

B Information
Leakage

® Time and State

m Cross Side
Scripting (XSS)

Heather Miller

Language and compiler support for
DISTRIBUTED PROGRAMMING

for Scala

Generally,
TYPE-SYSTEMS
GENERIC PROGRAMMING

Concretely,
DISTRIBUTABLE FUNCTIONS
EFFICIENT & EXTENSIBLE SERIALIZATION

CONCURRENT/DATAFLOW ABSTRACTIONS

Heather Miller (AN

heather.miller@epfl.ch :co

James Wilcox

James Wilcox

University of Washington

Jason (Gross

Some of my time
FIELDS arrancep By PORITY
FIORE PORE .
The rest of my time

SOCOLOGY 1S PSTHNOGY IS RIOLOGY 1S WHICH 15 JusT OH, HEY, T DIONT

JUST AFFUED Just APPLIED J'vSTAWL@ APFUED PHYSCS, SEE YOU GUYS ALL

Psmmoev Btowov (TS NKE TO THE WAY OVER THERE COME BACK

GE ON TOF L MESE, ommr

SCOUEETS POCHOGES BOGETS GEnSTS | Prysiisrs MATHEMATCIANS _< CATEGORY mzomsri /

Cartoon from xkcd, adapted by Alan Huang w

Vi, list[i] < list[i + 1]

ok

Math

Efficient
program

Image from “The Three Projections of Doctor Futamura” on
A Neighborhood of Infinity

Jonathan Frankle

'_."
"
“.
» -
’
/ -o
F i ._._v_._..
% -
\ e
%
%
-_ .
b
- -

L aure hompson

/

/V

Using Epistemic Temporal Logic for Dynamic
Security Policies

Security: An observing agent learns no more than the
combination of their previous knowledge and the
knowledge allowed by the current policy

Knowledge: Is formed from the agent’s trace of past
remembered observations

Policy: The set of initial values an agent may learn

Connection: Knowledge = set of initial states that the
agent knows to be possible

e This possiblilistic view corresponds to epistemic logic:
Ly = In some possible world an agent knows ¢

| uke Maurer

» Common CBV and CBN m-calculus encodings are closely
related to CPS.

Term (Ax. xx)(Ay.y)
CBV 7wk (vf (K(F) | 1 (x, h). X(x, b)) | k(v).

vk (vg (k(g) | 'g(y, h)- h{y)) | k(w).V{(w, ko)))
CBV CPS (Mk. k(A\(x, h). x(x, h))) (Av.

(Ak. k(A(y, h). hy))(Aw. v(w, ko)))

» Have m-calculus encoding for call-by-need:

CBNd 7 vk (vf (k(f) | 1f(x, h). vk (X(K') | K'(v). V{x, h))) | k(V).
vx (V(x, ko) | x(k'). vk (vg (k(g) | 'g(y, h). ¥(h)) |
k(w). (Ix(k). k{w) | K'(w)))))
» We introduce a corresponding CPS transform:
CBNd CPS (Mk. k(A(x, h). x(A1v. v(x, h)))) (A1 v.
vx. x =1 (A k". (Ak. k(A(y, h). yh))(A1w. x == Xk. kw in k'w))
in v(x, ko))

Luke Maurer maurerl@cs.uoregon.edu CPS, 7, and Call-By-Need

Vlario Alvarez

Mario Alvarez (Princeton) — Senior thesis

* VST (Appel et al, Princeton)

* MirrorShard (G. Malecha, Harvard)

- Reflective solver for separation-logic entailments
- Can solve entailments we currently can't automatically

* Goal: improve automation in VST

- Make system easier/practical for more applications, ultimately

- Learn about integrating external solvers with VST (eventually, maybe
SMT or others)

Matt Le

Deterministic Parallel Programming

@ Nondeterminism makes parallel programming difficult
@ Purely functional parallel languages are inherently deterministic

@ Unfortunately, mutable state can improve efficiency

@ Add restricted forms of mutable state

e Extend runtime system to preserve determinism.
e Formalize semantics of the language with these new features and prove
determinism.

'http://wuw.cs.rit.edu/~mtf/manticore/index.html
Matt Le (RIT) PLMW14 January 21, 2014 1/1

Matthew Loring

PLMW 2014

Security- Typed Programming Languages

@ Goal: Develop languages that help programmers reason about
the security of their programs

e Jif extends Java with direct support from the type system for
programming with the Decentralized Label Model

e Every type is annotated with labels specifying integrity and
confidentiality policies

Matthew Loring Cornell University

Matthew Milano

Network Verification

Matthew Milano
Cornell University

Goal: Verify formal properties

of network configurations o
automatically

— —>
Idea: Encode NetKAT semantics <« <«
using an SMT solver, and
automatically answer queries i P
about path properties 20:C e
Challenge: Obvious direct & ora
encodings generate infinite AT
models, which aren’t handled b1

well by current solvers | dup

Mike |zbick]

mikeizbicki / HLearn @’ Unwatch ~ 27 % Star 184 i© Fork 19

http://github.com/mikeizbicki/hlearn

Features k-fold cross-validation
. QO
- purely functional (Haskell) = standard cv
_ <
very fast 5 |
- parameters at the type level _monoid ¢v_ e
- deS|gn based on abstract algebra 100 200 300 400 500 600 700 800 900] 1000

number of folds

algebraic structure

what we get “for free”

monoid
monoid
monoid
abelian group
abelian group

online algorithms
parallel algorithms
fast cross-validation
subtract data points
more fast cross-validation

R-module data points weighted by the ring R
functor (simple) transfer learning via fast data pre-processing
monad (complex) transfer learning via fast pre-processing

Mike Shah

é\q vRSIT A

Q
§ A\
Java Critical Sections “§&f

W

Critical Section =
Figure 1. Call Graph

Michael.Shah@tufts.edu

Y

Viohsen Lesani

Nathalie Oostvogels

Type Systems

for JavaScript : for distributed
web applications| web applications

Nathalie Oostvogels - Vrije Universiteit Brussel (Belgium)

Nicholas Braga

Target Testing:
Automated test case discovery technique using inferred models

Nicholas Braga Yuriy Brun
University of Massachusetts Amherst

Test Traces:

Training Model:

74.15.155.103 [06/Jan/2011:07:24:13) "GET HTTP/1.1 /check-out.php"
13.15.232.201 [06/Jan/2011:07:24:19] "GET HTTP/1.1 /check-out.php"
13.15.232.201 [06/Jan/2011:07:25:33]) "GET HTTP/.1 /invalid-coupon.php"
74.15.155.103 [06/Jan/2011:07:27:05) "GET HTTP/1.1 ivalid-coupon.php”
74.15.155.199 [06/Jan/2011:07:28:43) "GET HTTP/1.1 /check-out.php"
74.15.155.103 [06/Jan/2011:07:28:14]) "GET HTTP/1.1 /reduce-price.php"
74.15.155.199 [06/Jan/2011:07:29:02) "GET HTTP/1.1 /get-credit-card.php"

13.15.232.201 [06/Jan/2011:07:30:22) "GET HTTP/1.1 /reduce-price.php"
74.15.155.103 [06/Jan/2011:07:30:55] "GET HTTP/1.1 /check-out.php"
10(13.15.232.201 [06/Jan/2011:07:31:17) "GET HTTP/1.1 /check-out.php"

11[13.15.232.201 (06/Jan/2011:07:31:20) "GET HTTP/1.1 /get-credit-card.php"
12/74.15.155.103 [06/Jan/2011:07:31:44] "GET HTTP/1.1 /get-credit-card.php"
+

Regular Line parsing: (7<ip>) .+ /(?<TYPE>.+).php"
Expressions: Execution mapping: ‘\k<ip>

‘Synoptic
Generated Model:
valid-
_ 1
o+ oy 1= [—>(ekon)
9,10

1

price 58 +
o

coupon_ i 711,12

login

(scoobydoo,redballoon) (scoobydoo redbull) scoobydoo,redb)

=(scoobydoo redbull) \(scoobydoo redbull)

bt

-
00~ O B W —

w

-4
b

login grant <K,v>

g
-
&
=]
-~
A
~
<
\

invoke begin

begin invoke

check-out

invoke end

-0
e
)

O

Nicholas Vanderwelt

Leveraging Symbolic Execution to
Violate Object Invariants

—
Li bra ry EBackv;i;ciitsiz;nboch p , —p> SyntheSiS

|

Unsafe class

Nicholas Vanderweit
University of Colorado Boulder

Pavel Panchekha

Pavel Panchekha

University of Washington

Peng Wang

- —

Compositional Compilation

¢ (Horizontally) Can link with other modules

O (Vertically) Can compose compiler passes
© (Higher-order) Coder pointers

© Mechanized proof

Peng (Perry) Wang
MIT

Phil Nguyen

» Contracts

o enforce invariants dynamically

o delay error discovery

°© introduce overheads

o are hard to verify due to expressiveness
* Verification

O uses abstract reduction semantics

© scales to many language features

Philip Johnson-Freyo

Extending the Classical Sequent Calculus

Syntax Semantics
Commands: ¢ ::= (v||e)
Terms: v ::= pa.c | x | case[call(x, a).c] | pair(v, v) (pacllE) = ciB/at (Vlfix.c) = c{V/x}
Co-Terms: e ::= fix.c | a | call(v, e) | case[pair(x, y).c] (case[call(x, a).c]||call(v, e)) = (v||fix. (ua.c||e))
Simple Types _
Plus rule for pairs (and what ever other types we add),
1, ...V and E determine evaluation order
x:AF x: AlA MNa:AFa: A A
c:(Mx:ArFa:B,A) E v o AlA = w: BA
- FTFa:AA (Mx:AF A
c:TFa:Al c:(I,x) T case[call(x, a).c] - A — B|A [pair(vi, v): A® B|A
[+ pa.c: AlA Mix.c: AF A
r=v:AlA e: BF A c:(Mx:Ay:BFA)
r'=v:ANA MNe: AF A
v Al e Mcall(v,e): A — BF A Mcase[pair(x, y).c] : A® BF A

(vlle) : (T F A)

Problem with Polymorphism

“Natural” second order quantification rules = not type safe when implicit

(o ((Ax.x), (Af.p ((F, A O)l|e))]) || case[(F, g). (F|| “bam” - fi. {(g||(Ax.x +1) - B))])

ML value restriction doesn’t dualize well

Philip Johnson-Freyd High Level? Low Level? Functional? OOP?

Shayak Sen

We can prove protocols secure.
... And why that may not good enough

Proofs of Crypto Protocols are hard.

PL Technigues have helped produce formal proofs of protocols
Spi-Calculus, ProVerif, PCL, CryptoVerif, F7

0

 But how secure is your secure crypto protocol?

 Of course someone could break it in a hundred years.
 Could they break it in a month?
'~ How often?

- Want to formally prove exact probabilistic bounds on protocols.

 Metatheory requires a probabilistic language with precise cost semantics
 Concurrency and adversarial scheduling to reason about multiple sessions
-~ The challenge is efficient bounds

Shayak Sen . . .
Work in progress: with Anupam Datta, Joe Halpern, John Mitchell and Arnab Roy Carﬂegle MellOﬂ UﬂlVeI'Slty

Shuying Liang

Pruning, Pushdown-
Exception Flow Analysis

University of Utah

Shuying Liang

Theron Rabe

Eesk

Arbitrary Minimal
Unformatted Equivalent
String String

Theron Rabe: trabe0O9@winona.edu

Thomas Wood

THOMAS WOOD

1°" YEAR PHD STUDENT, IMPERIAL COLLEGE LONDON

» Veritying Secure ECMAScript programs

» SES: allows functions across sandbox boundaries
» Do we unintentionally leak data or functionality?
» Program logic for security properties

> Testing JS interpreters

> JS test suite: Notoriously incomplete
» JSCert: Executable formal semantics for JavaScript
» Can we automatically do better?

Willlam J. Bowman

Security Preserving
ompilation

William J. Bowman
Northeastern University

Ye Fang

Price

real value:

utility_function(outcome) =
if(a_i is winner) Jn\
ut_i = value - price;

else
ut_i =0;

Computer-aided mechanism design Come to poster sessior
Ye Fang, Swarat Chuaduri, Moshi Vardi @ Rice Univerisy if you are interested!

Winner

Clients

precondition on inputs

Example:
Second price mechanism
->Vickrey auction

Generalized second price mechanism
-> Google online ads auction

M, Vinputs, precondition(inputs)

M(list of bids)= = postcondition(output)

postcondition on output

winnher = ?;
|

price =
—return (winner, price) SAT

SMT solver
L UNSAT

No

Y1 LI

Symbolic Optimization with SMT Solvers

Y1 Li - University of Toronto

« SMT solvers are used everywhere
 Extending SMT solvers to do optimization

P, o
 Applications in PL.:

— Numerical invariant generation

— Program synthesis, counterexample generation
— Constraint programming

— Many others ...

 Check out our poster and paper at POPL

YUKl Isnhil

Type Debugging

let rec fold r lst = match lst with
] -> 1nt
° Embedded Type | :i:’:s;:(zziz ;:\init rest)
Debugger [TSUShima, let length 1st = FoldICFuRIT right -> left + right + 1) 0 lst]]
‘12] ~—
_ interactve Thhe 2"d argument of this application
as wrong type.
— OCaml y)
— “argument”™?
* Analyze the error logs “application”?
of novice students — “this” _ which?
* How can we design — why “wrong”?
“novice-friendly” error — higher-order function...

messages or languages?

